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Alcoholic drinks contaminated, either accidentally or deliber-
ately, by methanol claimed at least 789 lives in 2019, mostly in 
Asia. Here, a palm-sized, multi-use sensor–smartphone sys-
tem is presented for on-demand headspace analysis of bever-
ages. The analyser quantified methanol concentrations in 89 
pure and methanol-contaminated alcoholic drinks from 6 con-
tinents and performed accurately for 107 consecutive days. 
This device could help consumers, distillers, law-enforcing 
authorities and healthcare workers to easily screen methanol 
in alcoholic beverages.

Alcoholic beverages are often intentionally adulterated with 
cheap methanol (up to 50 vol%)1 to increase beverage profit and 
potency. In 2017–2019, approximately 7,104 intoxicated people and 
more than 1,888 fatalities were reported in 306 registered methanol 
poisoning outbreaks, with more than 90% in Asia2. Young men are 
most affected, as was shown in a 2018 case in Iran with 768 vic-
tims: 41% were aged 25–36 and 93% of the deaths were male3. Also, 
methanol occurs naturally in most alcoholic beverages, originating 
from the degradation of pectin during fermentation4. Methanol 
may reach high concentrations during improper distillation, par-
ticularly in fruit spirits (up to 2.4 vol%)5. In the European Union, the 
legal limits for distillates from fruit fermentation range from 0.09 to 
0.71 vol% (at 36 vol% ethanol)6.

Chromatography is the ‘gold’ standard for methanol testing, but 
it is costly, slow and confined to the laboratory. More compact gas 
sensors, such as fluorescent silica-gel plates7 or aluminium-doped 
nickel oxide nanofibres8, detect methanol in the container head-
space above beverages, but can be unreliable owing to insufficient 
detection limits (for example, 4 vol%)7 and an inability to distinguish 
methanol from ethanol background8. Most importantly, they have 
not been validated under real conditions7,8, which is a general chal-
lenge for sensor science9. Inexpensive, simple-to-use and portable 
methanol detectors are urgently needed by consumers, distributors 
and authorities (for example, police and customs) to screen such 
beverages. These detectors would also be valuable for professional 
and even home distillers to assess product adherence to legal limits 
and monitor methanol concentrations during distillation and possi-
bly even occupational exposure. Furthermore, such detectors could 
facilitate screening of methanol intoxication by breath analysis by 
first responders and emergency room workers10.

Thus, we introduce a fully integrated, handheld, smartphone- 
compatible and inexpensive analyser (Fig. 1a) for rapid methanol 
and ethanol quantification, based on a previously developed10 sepa-
ration column (Fig. 1b), with validated performance in real alcoholic 
beverages. The analyser weighs 94 g and is small (2 × 4 × 12 cm3), 
comparable to commercial breath ethanol detectors (for example,  

Dräger Alcotest 3820). The separation column consists of Tenax 
particles that retain ethanol longer than methanol10 and a highly 
sensitive chemo-resistive sensor, based on flame-deposited 
palladium-doped tin dioxide nanoparticles11, detects both chemi-
cals sequentially and thus selectively10. Owing to its low power 
consumption (~1.1 W), which is reduced by non-continuous opera-
tion (the pump is switched on only during sampling, analysis and 
recovery; Fig. 1c), it can be powered by a battery. This protects 
the sensor and the column from unnecessary exposure to room 
air contaminants and reduces fluctuations in baseline resistance 
(Supplementary Fig. 1). Wireless communication by WiFi to a 
smartphone controls the device and displays the ethanol and meth-
anol concentrations in real time (Fig. 1d). In the field, the device can 
be operated also without an external network by direct communica-
tion through Bluetooth with the smartphone. The app can be used 
by Android- or iOS-based systems, and thus, should be compatible 
with older smartphones as well, which are common in low-income 
regions where most outbreaks occur. Also, additional functional-
ities such as text-to-speech features can be implemented flexibly.

The device works by drawing a vapour/gas sample from the 
container headspace (Fig. 1) into the Tenax column. There, metha-
nol and ethanol are retained temporarily. Methanol elutes first and 
peaks at 1.5 min while ethanol starts to elute later (that is, 1.9 min for 
Stroh rum and 3.8 min for beer), enabling the selective and quanti-
tative detection of both (Fig. 2a). The simultaneous quantification 
of methanol and ethanol is critical as the legally allowed methanol 
content depends on ethanol concentration6. The present device 
offers a lower methanol detection limit (0.01 vol%) than previous 
sensors, as demonstrated in the relevant ethanol (5–80 vol%) con-
centration range (Supplementary Figs. 2 and 3) and compared in the 
Supplementary Information. Alcoholic beverages are complex mix-
tures including flavouring additives that may interfere with the sen-
sor. However, no additional peaks are observed as these compounds 
are present at much lower concentrations (for example, 0.0015 vol% 
ethyl acetate12) or retained longer (for example, 1-propanol 29 times 
longer than ethanol13) (Supplementary Fig. 4).

The device was evaluated on 89 pure and methanol-contaminated 
samples of beer, sake, wine (from five continents; Supplementary 
Fig. 5), Baileys, arrack, Stroh rum, and pear and cherry spirits  
(Fig. 2b). The ethanol concentrations are quantified accurately  
with a high R2 (0.96) and low relative error (εrel = 12.9%) (Fig. 2c). 
Pear spirit errors are discussed in the Supplementary Information. 
The device accurately detects methanol concentrations over three 
orders of magnitude (0.01–10 vol%) with R2 = 0.94 and 19.5% 
error (Fig. 2d). This includes the correct quantification of 0.39 
and 0.54 vol% methanol in pure home-made pear and local cherry  
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spirits, just below the EU legal limit6. Harmful concentrations of 
3 and 10 vol% methanol, above the recommended limit (2 vol%; 
dashed line)14, are recognized.

The repeatability and stability were evaluated on laboratory 
mixtures containing 1 vol% methanol and 40 vol% ethanol in 
water. During 3 consecutive exposures (Fig. 2e), the peak metha-
nol response and retention time, tR, of ethanol vary by 4% and 3%, 
respectively, indicating reliable repeatability. The device provided 
stable results for 107 consecutive days, once per day for freshly pre-
pared samples (Fig. 2f), with errors of 17 and 19% for methanol 
and ethanol, respectively. No deterioration was observed, meaning 
the recovery methodology (Fig. 1c) suffices to maintain the sen-
sor’s performance. Variations may be related to altered humidity 
(27.1–48.2%) and/or temperature (22.5–26.0 °C) during these 107 
days—the response of chemo-resistive sensors is affected by humid-
ity11 and the tR of the separation column changes with temperature, 
as shown previously10. Nevertheless, the accuracy of the detector 
is sufficient to distinguish harmful from harmless methanol con-
centrations in alcoholic beverages (Fig. 2d). If higher accuracies are 
required, this can be corrected with co-located temperature and 
humidity sensors15.

In conclusion, we present a handheld, low-cost, simple-to-use 
and reliable methanol detector that can be readily used by beverage 
consumers, distillers, healthcare workers and law-enforcing author-
ities for easy methanol screening of alcoholic beverages and possibly 
even in the breath of intoxicated people. This modular design could 
be applied also for detection of other food contaminants, such as 
formaldehyde16, or food freshness markers, such as ammonia from 
spoiling seafood17. Concepts for selective analyte sensing exist, 
including zeolite membranes (formaldehyde)11 or porous CuBr 
(ammonia)18, which can be incorporated into the present device. 
Affordable detectors are particularly attractive for widely distrib-
uted use, especially in low-income economies where food safety  
is a concern.

Methods
The stand-alone analyser is shown in Fig. 1a. It consists of a capillary (Sterican, 
B. Braun AG) to sample the headspace, a separation column to pre-separate the 
gas mixture, a sensor for analyte detection, a vane pump (135 FZ 3 V, Schwarz 
Precision) providing the required flow of 25 ml min−1 and a microcontroller 
(Raspberry Pi Zero W) to control the sensor and pump, extract the data and 
communicate wirelessly with a computer or smartphone. The components are 
integrated onto a PCB and powered by the microcontroller’s micro-USB port using 
a power adapter. The separation column, palladium-doped tin dioxide sensor and 
PCB are described in the Supplementary Information. The device is inexpensive, 
consisting mostly of standard components.

The sensing film resistance is determined in the relevant range of 1–30 MΩ 
with an accuracy of 99.79%, as described in the Supplementary Information.  
The sensor response S is defined as:

S ¼ Rb=Rs � 1 ð1Þ

Therein, Rs and Rb are the resistances during sampling and after overnight 
stabilization (without flow), respectively. The retention time tR is defined as the 
time needed to reach the peak response, analogous to gas chromatography19. 
The breakthrough time tB is extrapolated from a tangent to the ethanol peak20. 
Examples for the definition of tR and tB are shown in Supplementary Fig. 6. All 
signals are continuously processed and stored by the microcontroller. Methanol 
and ethanol concentrations are determined by comparison of the methanol peak 
response and ethanol tR to calibration curves (Supplementary Fig. 3), which is 
more accurate than if the tR of methanol and ethanol peak response are used, 
respectively (Supplementary Fig. 7). The microcontroller communicates wirelessly 
to a smartphone or computer to control its operation and display the results. 
The smartphone app was designed using the free mobile app constructor Blynk 
(Version 2.27.9, Blynk Inc., United States).

Sample preparation of laboratory mixtures and real beverages are described in 
the Supplementary Information. The detector is exposed to an air flow only during 
sampling, analysis and recovery (that is, non-continuous operation; Fig. 1c). Before 
measurement, the prepared vials are at rest for at least 1 min and then shaken for 
30 s to facilitate rapid phase equilibrium between the liquid and the headspace. To 
perform a measurement, the pump is turned on (25 ml min−1) and the headspace 
above the liquid is sampled for 10 s, resulting in a total sample volume of about 
4.17 ml. A second capillary compensates the pressure in the vial (Fig. 1a). 
Afterwards, the capillaries are removed from the vial and room air is sampled to 
carry the headspace sample through the separation column to the sensor. During 
analysis (0 ≤ t ≤ 6 min), the headspace sample containing methanol and ethanol 
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Fig. 1 | Analyser design. a, The handheld analyser during measurement. b, A schematic of the detection concept. c, The sampling and analysis procedure. 
d, The tailor-made app to visualize results on a smartphone transmitted through a wireless local area network. PCB, printed circuit board; Pd, palladium.
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passes the column and is analysed by the sensor. Thereafter (6 < t ≤ 10 min), the 
flow is maximized (~60 ml min−1), to quickly remove analyte residues from the 
column, refresh the sensor chamber and prepare the device for rapid reuse.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available as source data or can 
be requested from the corresponding author.
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Fig. 2 | Performance in real beverages and laboratory samples. a, The sensor response for water, beer, arrack and Stroh rum contaminated with 1 vol% 
methanol. b, The origin of the tested alcoholic beverages indicated by country codes (ISO 3166). c,d, The corresponding actual and sensor-measured 
ethanol (c) and methanol (d) concentrations in pure (filled symbols) and 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 vol% methanol-contaminated or -spiked (open 
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and beer (diamonds) (n = 89 independent samples). The methanol concentrations of pure beer, sake, Baileys, arrack and Stroh rum were below the 
sensor’s detection limit (that is, <0.01 vol%) and thus are not included. The dashed line indicates the recommended limit (that is, 2 vol% (ref. 14)).  
e, Sensor responses to three consecutive headspace samples with 1 vol% methanol and 40 vol% ethanol in water. Methanol responses and ethanol tR are 
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